Welcome to Deep Reinforcement Learning using python!
Have you ever asked yourself how smart robots are created?
Reinforcement learning concerned with creating intelligent robots which is a sub-field of machine learning that achieved impressive results in the recent years where now we can build robots that can beat humans in very hard games like alpha-go game and chess game.
Deep Reinforcement Learning means Reinforcement learning field plus deep learning field where deep learning it is also a a sub-field of machine learning which uses special algorithms called neural networks.
In this course we will talk about Deep Reinforcement Learning and we will talk about the following things :-
Section 1: An Introduction to Deep Reinforcement Learning
In this section we will study all the fundamentals of deep reinforcement learning . These include Policy , Value function , Q function and neural network.
Section 2: Setting up the environment
In this section we will learn how to create our virtual environment and installing all required packages.
Section 3: Grid World Game & Deep Q-Learning
In this section we will learn how to build our first smart robot to solve Grid World Game.
Here we will learn how to build and train our neural network and how to make exploration and exploitation.
Section 4: Mountain Car game & Deep Q-Learning
In this section we will try to build a robot to solve Mountain Car game.
Here we will learn how to build ICM module and RND module to solve sparse reward problem in Mountain Car game.
Section 5: Flappy bird game & Deep Q-learning
In this section we will learn how to build a smart robot to solve Flappy bird game.
Here we will learn how to build many variants of Q network like dueling Q network , prioritized Q network and 2 steps Q network
Section 6: Ms Pacman game & Deep Q-Learning
In this section we will learn how to build a smart robot to solve Ms Pacman game.
Here we will learn how to build another variants of Q network like noisy Q network , double Q network and n-steps Q network.
Section 7:Stock trading & Deep Q-Learning
In this section we will learn how to build a smart robot for stock trading.
Coupons are issued by instructors to promote their courses, gain traction and reach momentum. The instructor can choose to emit discounted (ex: $11.99 coupon) or 100% off coupon (you pay nothing). Each coupon becomes expired when emitted quota is over (1000 enrollments) OR expiration date has been reach (5 days).
For a coupon, number of activation are now capped to 1000 max. This means that it can be activated only a 1000 times, and then it expires; or reach its expiration date; whatever happens first.
We have no contact with instructors, and only instructors can emit coupons. You can try to directly contact the instructor finding his/her Twitter/Facebook, and ask him/her for a coupon, but at our level, we cannot help, sorry.
We have an affiliate contract with Udemy and we may receive a commission when you purchase through some of the affiliate links on this website (only paid courses, not free or 100% discounted courses). This website is not a part of the Udemy Inc. Additionally, this website is NOT endorsed by Udemy in any way. Udemy is a trademark of Udemy, Inc. `